

SP6000FACTBOOK

Table of content

Introduction	03
Test results at a glance	04
SP6000 in comparison	04
Instructions for use	06
Tests	07
SIR Test	07
Solderball Test	08
Wetting Test	08
Slump Test	09
Copper Corrosion	09
Copper Mirror Test	1ß
Acid Value	10
Halide Evaluation	10
Printability (Benchmark II)	11
Printing After Wait (PAW) (Benchmark II)	11
Delivery forms	12

Introduction

Stannol solder paste SP6000 has been specially developed for use with the alloys TSC305 (Sn96.5Ag3Cu0.5) T4 and TSC105 (Sn98.5Ag1Cu0.5) T4.

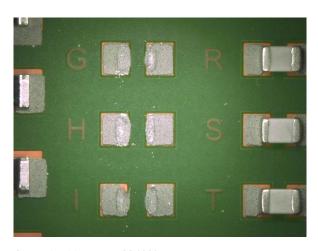
During the development of SP6000, we placed a special focus on environmental compatibility in addition to the technical properties.

More than 85 percent CO2 savings

The result: An impressive reduction of CO₂ emissions by more than 85 percent compared to common solder pastes, for example through the use of recycled solder, sustainable packaging materials and climate-neutral transport. With SP6000, we are not only focusing on performance, but also on sustainability.

Larger stencil thickness and step stencils


Another goal was to realise a solder paste in particle size 4 that could be used for a 120-/125- μm stencil as well as for a step stencil with 150 μm . The challenge was to avoid solder balls on passive components (midchip balling). The cause of solder balls is the capillary action between the components and the PCB. A larger stencil thickness and fine solder powder promote this phenomenon. Good compatibility with step stencils was also taken into account during development.


Test results at a glance

Tests	Specification	Result
Copper corrosion:	ANSI/J-STD-004C - IPC-TM-650, Method 2.6.15	pass
Copper mirror:	ANSI/J-STD-004C - PC-TM-650, Method 2.3.32	pass
Surface insulation resistance:	ANSI/J-STD-004C - IPC TM650, Method 2.6.3.3/2.6.3.7	pass
Silver chromate paper test:	ANSI/J-STD-004C - IPC-TM-650, Method 2.3.33	pass
Chlorides:	ANSI/J-STD-004C - IPC-TM-650, Method 2.3.35	no addition
Bromides:	ANSI/J-STD-004C - IPC-TM-650, Method 2.3.35	no addition
Solder balling:	ANSI/J-STD-005A – IPC TM-650, Method 2.4.43 after 1 h at room temperature after 24 h at room temperature	pass, class 1 pass, class 1
Wetting test:	ANSI/J-STD-005A - IPC TM-650 Method 2.4.45	pass, class 1
Slump test: (T4, stencil 150 µm)	10 minutes at 150 °C	pass, 0,3 mm
Open time:	laboratory internal specification	at least 8 h at 23 °C/65 % rF
Flux activity classification:	J-STD-004	REL0

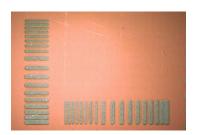
SP6000 in comparison

Solder paste misprint

Stannol solder paste SP6000

A0I compatibility

The flux residues of SP6000 are clear and transparent after soldering – this prevents the detection of pseudo defects during automatic optical inspection (AOI).

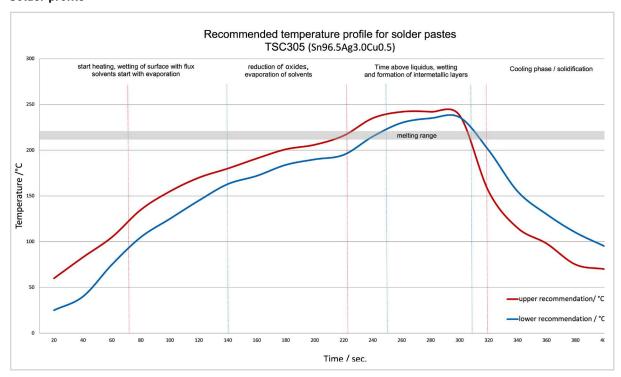


The flux residues of a conventional solder paste are yellowish after soldering.

High stability

Due to the high stability, a very wide process window for solder paste printing is achieved.

Voiding


Void formation with conventional solder paste

Reduced void formation with SP6000

Solder profile

Instructions for use

Cleaning

SP6000 is classified as L0 solder paste and is therefore considered a typical No-Clean product. If cleaning is still required, approved products from Zestron or Kolb Cleaning can be used.

Transport and storage

SP6000 should be transported in packaging in which the temperature of 0 to 8 $^{\circ}\text{C}$ can be kept constant for

as long as possible. Transport time should be kept to a minimum. Transport temperatures above 40 °C should be avoided if possible. A supply chain profile can be created with the help of a thermologger. Storage at 0 to 8 °C increases the duration of use. The solder paste SP6000 has a minimum shelf life of six months under the described storage conditions.

Flux classification according to J-STD-004C

The tests described in the standard are used to test and categorise fluxes for their properties under standardised conditions. Depending on the test results, the fluxes are classified into the categories L, M and H. The number after the test indicates whether the flux is halogen-free or not. The number following the category indicates whether the flux contains halides (1) or is halide-free (0). If all tests are passed in the uncleaned condition, we speak of No-Clean products. However,

this designation only states that the corresponding products have passed the tests in the uncleaned state. The test conditions do not cover all extreme conditions that a PCB may experience in the field. The final risk assessment of the residues and the associated decision as to whether the flux residues have to be removed after the soldering process are in any case the responsibility of the respective electronics manufacturer.

Tests

SIR Test (IPC-TM-650, Method 2.6.3.3/2.6.3.7)

Introduction

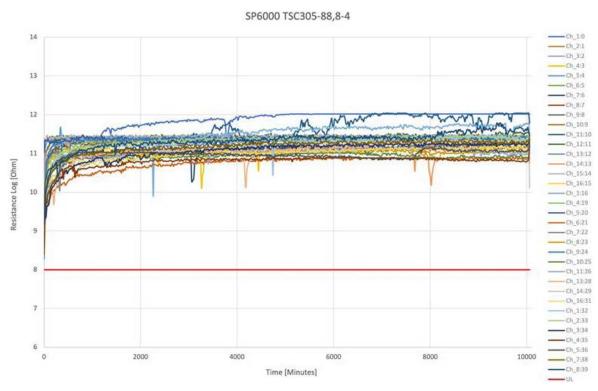
The abbreviation SIR stands for Surface Insulation Resistance. In a SIR test, the SIR values of a live PCB are recorded over time under defined environmental conditions and a defined PCB geometry. A drop in the SIR value in the course of the measurement indicates unwanted reactions, e.g. flux residues.

Test conditions

Test boards: $400\text{-}200~\mu m$ comb pattern Bare copper on FR-4: 40 ± 1 °C, 90 ± 3 % rH

Measuring range: up to 1013 Ω with electrical preload

5 VDC


Test duration: 168 h (7 days)

Test criteria

Criteria for passing the SIR test

- All SIR measurements shall achieve a minimum resistance of 100 $M\Omega$ on all test samples after 168 hours.
- There shall be no evidence of electrochemical migration (filament growth) that reduces the conductor spacing by more than 20 percent.
- There shall be no corrosion of the conductors (minor discolouration is acceptable).

Test results

After 168 h > 108 Ω = pass

Solderball Test (IPC-TM-650, Method 2.4.43)

Introduction

The solder ball test is used to assess the quality of the solder paste. For this purpose, defined quantities of solder paste are applied to a ceramic plate using a stencil and melted with the help of a heat source.

Test conditions

Ceramic plate: 50 x 50 x 0,6 mm (Al₂O₃-98 %)

Stencil: 150 µm

Temperature: 150 °C and 250 °C Test duration: 20 sec and 30 sec

Test results

One single fully formed solder ball = pass

Wetting Test (IPC-TM-650, Method 2.4.45)

Introduction

The wetting test is used to assess the activity of the solder paste. For this purpose, defined quantities of solder paste are applied to a copper plate using a stencil and melted using a heat source.

Test conditions

Copper plates: 50 x 50 x 0,8 mm CU sheet ETP

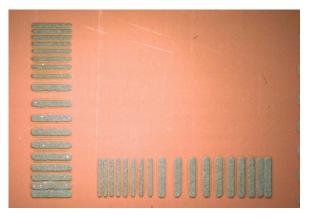
Stencil: $150\ \mu m$

Temperature: 150 °C and 250 °C Test duration: 20 sec and 30 sec

Test results

The surface is completely wetted = pass

Slump Test


Introduction

The Slump Test helps to assess the stability of the solder paste. For this purpose, defined quantities of solder paste are applied to a substrate using a stencil and dried in a thermal oven.

Test conditions

Substrate: 50 x 50 x 0,8 mm Temperature: 150 +/-5 °C Test duration: 10 – 15 min

Test results

Contour stability 0,3

Copper Corrosion (IPC-TM-650, Method 2.6.15)

Introduction

The copper corrosion test is used to determine the corrosive properties of flux residues under defined surrounding conditions.

Test conditions

Test coupon: $50 \times 50 \times 0.5$ mm copper Climate: 40 ± 1 °C, 93 ± 2 % rH Test duration: 240 h (10 days)

Test criteria

Low/No Corrosion (L): No signs of corrosion are observed. The initial colour change that may develop when the copper coupon is heated during soldering is not considered.

Moderate Corrosion (M): Slight white or coloured spots in the flux residues but without pitting of the copper

High Corrosion (H): Development of green-blue discolouration and/or corrosion with observation of pitting of the copper surface.

Test results

No corrosion: Classification L

Copper Mirror (IPC-TM-650, Method 2.3.32)

Introduction

The copper mirror test has been developed to determine the removal effect that the flux has on the copper layer.

Test conditions

Test coupon: Glas panel with a thickness of

approximately 50nm

Climate: 23 ± 2 °C, 50 ± 5 % rH Test duration: 24 h (1 day)

Test criteria

L = The copper layer was not completely removed.

No breakthrough of the copper layer

M = Complete removal of copper on a maximum of 50 percent of the surface of the applied solution (breakthrough smaller than 50 percent).

H = Complete removal of the copper layer on more than 50 percent of the wetted area (breakthrough greater than 50 percent).

Test results

No breakthrough = pass (Classification L)

Acid value (IPC-TM-650, Method 2.3.13)

Introduction

The acid value measures the content of acidic, active substances in a sample. The acid value is measured by the amount of potassium hydroxide (KOH) in milligrams needed to neutralise one gram of the substance.

Test criteria

The method is described in IPC-TM-650, method 2.3.13. Method B is used.

Test results

182 mg KOH/g

Halide evidence (IPC-TM-650, Method 2.3.35)

Introduction

The halide test is used for the detection of chloride and bromide ions in liquid or extracted fluxes.

Test criteria

The method is described in IPC-TM-650, method 2.3.35.

Test results

No halides can be detected.

Printability (Benchmark II)

Introduction

Good printability is important to achieve a good line resolution for consistent results with different printing parameters.

Printer settings

Speed: 50 mm/s

Separation speed: 10 mm/s Squeegee pressure: 0.25 kg/cm Stencil thickness: $120 \text{ }\mu\text{m}$

Test results

Printability (Benchmark II):

0,4 mm Pitch

100P BQFT

(horizontal narrow)

100P BQFT (horizontal narrow)

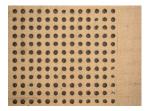
Print after stencil cleaning

Printing After Wait (Benchmark II)

Introduction

Printing After Wait (PAW) is important for restoring the same print quality immediately after production line downtimes.

Printer settings


Speed: 50 mm/s

Separation speed: 10 mm/s Squeegee pressure: 0.25 kg/cm Stencil thickness: $120 \text{ }\mu\text{m}$

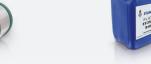
Test results

Print after 1 hour wait (180 μ m)

Print after 1 hour wait

Delivery forms

Titel	Alloy	Packaging	Weight
SP6000	TSC305 T4	Jar or cartridge	500-1200 g
SP6000D	TSC305 T3	Dispenser	40-125 g


Further articles are available on request.

For more technical information, please visit the Stannol website at www.stannol.de/en/downloads

SOLDER WIRE

FLUX

SOLDER PASTE

ACCESSORIES

SOLDER BARS

Stannol GmbH & Co. KG Haberstr. 24, 42551 Velbert, Germany Tel: +49 (0) 2051 3120 -0 info@stannol.de www.stannol.de

